



ELSEVIER

Journal of Chromatography A, 902 (2000) 389–404

JOURNAL OF  
CHROMATOGRAPHY A

[www.elsevier.com/locate/chroma](http://www.elsevier.com/locate/chroma)

# Determination of floral fragrances of *Rosa hybrida* using solid-phase trapping-solvent extraction and gas chromatography–mass spectrometry

Hyun-Jung Kim<sup>1</sup>, Kun Kim<sup>2</sup>, Nam-Sun Kim, Dong-Sun Lee\*

Department of Chemistry, Seoul Women's University, Seoul 139-774, South Korea

Received 21 March 2000; received in revised form 8 August 2000; accepted 11 August 2000

## Abstract

Floral fragrances emanated from *Rosa hybrida* were determined by solid-phase trapping extraction and GC–MS. A novel protocol of sampling technique was established. There is a variation in the recoveries depending on the adsorbent and components. A total of 41 compounds were identified in the floral fragrances of *Rosa hybrida*. These include alcohols, aldehydes, alkanes, monoterpenes, sesquiterpene, esters, ether and ketones. Citral, *n*-nonane, *n*-butyl acetate, *n*-decane,  $\beta$ -phenylethyl acetate and hexadecanol were major components. Floral fragrances differ between rose species and sample to sample within a single species. Interestingly, endocrine disruptors such as bis(2-ethylhexyl) phthalate were detected simultaneously. © 2000 Elsevier Science B.V. All rights reserved.

**Keywords:** *Rosa hybrida*; Fragrance components; Gas chromatography–mass spectrometry; Solid-phase trapping extraction; Endocrine disruptors

## 1. Introduction

Several thousand compounds have been identified from various floral fragrances. Most of these compounds are terpenes, esters, alcohols, aldehydes, ketones or alkanes. An excellent review of the useful literature on floral scents was given by Knudsen et al. [1], and there have been some reports on the

fragrance compositions of rose flowers. Dobson et al. [2] found a total of 31 fragrance compounds including 2-phenylethanol, citronellol, benzyl alcohol, methyleugenol and geraniol from *Rosa rugosa*. Some other workers [3–11] also reported fragrance components of Rosaceae species including *Rosa chinensis* and *Rosa damascena*.

Recently, floral fragrances have become pervasive in modern life, including cosmetics, foods, aromatherapy, household products, and many other consumer goods [12]. Annual consumption of flavours and fragrances is estimated at US\$9687 million worldwide [13]. The rapid expansion of the fragrance industry worldwide has been driven by the many demands for all natural fragrances. Many perfumers still survey natural sources for novel

\*Corresponding author. Fax: +82-2-970-5660.

E-mail address: [dslee@swu.ac.kr](mailto:dslee@swu.ac.kr) (D.-S. Lee).

<sup>1</sup>Present address: Combined Cycle Power Plant Chemistry Sec, Korea Electric Power Corporation, P.O. Box 21, Boryung, Chungnam 355-840, South Korea.

<sup>2</sup>Present address: Bioproducts Research Center, Yonsei University, Seoul 120-749, South Korea.

fragrance compounds, this information is most often used in directing organic syntheses to imitate natural fragrances or create new combinations [14,15]. Also, the biological natures and functions of floral fragrances have been interesting from the botanical and entomological points of view [16,17]. Therefore, separations and analyses of floral fragrances are very important and useful in many fields.

Traditional methods to obtain odorous components from natural sources were enfleurage (pommade method), expression (cold pressing), extraction (maceration or percolation) and distillation with steam [18]. Separations of these kinds are necessary in not only manufacturing operations but also analytical procedures. In the analytical scale combined with gas chromatography–mass spectrometry (GC–MS), fragrance compounds are generally obtained from flowers by solvent extraction, steam distillation or headspace trapping. The major limitation of solvent extraction is that it is useful only on samples that do not contain any lipids. Both solvent extraction and steam distillation are liable to produce artifacts by isolating non-volatile materials from tissues or by partial decompositions [1]. Therefore, the sampling technique used in a majority of the studies was headspace adsorption method, and adsorbed compounds were either thermally desorbed or eluted with organic solvents prior to GC–MS [19–27]. Tenax TA, Porapak Q and charcoal are commonly used as adsorbent to trap fragrance compounds. Charcoal is an extremely powerful and non-selective adsorbent that traps a wide range of organic compounds very efficiently. However, because its adsorption is so strong, desorption can become something of problem. An alternate technique for enriching headspace volatiles that has grown in popularity is the use of milder porous polymer adsorbents as trapping media. Tenax (poly[2,6-diphenyl-*p*-phenylene oxide]) was first introduced for use as a GC stationary phase by Van Wijk [28]. This material exhibited a high adsorptive capacity towards volatile and semi-volatile organic compounds and low affinity for water vapor. Since these porous polymers have large surface areas (Tenax TA, 35 m<sup>2</sup>/g; Porapak Q, 582 m<sup>2</sup>/g) [19] and the thermal stability, they are usually used in preference to adsorbent for solid-phase extraction. The use of other adsorbents soon followed. On the other hand headspace methods

produce an aroma isolate that is very biased towards some aroma constituents, and analytical data one receives is on the amount of an aroma constituent only in the headspace. It thus appears that quantitative analysis is difficult by the headspace method. Nevertheless, compared with conventional liquid–liquid extraction, solid-phase extraction using porous polymers is convenient, easy to use and less time consuming, requires much smaller amounts of solvents and is capable of producing cleaner extracts [29,30]. There are extensive reports upon the application of Tenax and Porapak for the collection of volatile fragrances of flowers [1–11,19–27]. The choice of adsorbent and trapping method is important parameter, which governs the range of fragrance compounds that can be effectively trapped. Numerous investigations have compared adsorbents with regard to trapping efficiencies and breakthrough volumes for various classes of organic compounds [31–36]. However, practically it is difficult to choose a perfect method for isolating and concentrating the volatile compounds.

In this study, floral fragrances emanated from Rosaceae were analyzed by solid-phase trapping extraction (SPTE) and GC–MS. A novel protocol of SPTE by a modification of earlier techniques [37–39] was described. Collection efficiencies of the various adsorbents such as Tenax TA, Porapak Q, Chromosorb P, and W, Sep-Pak plus C<sub>18</sub>, CN and NH<sub>2</sub> cartridges were compared. Our final objective is to characterize the rosy floral fragrances in the *Rosa hybrida* species, which are the most popular domestic cultivars. Variation in floral fragrances among the three closely related species of *Rosa hybrida* was also investigated.

## 2. Experimental

### 2.1. Materials

The freshly picked flower samples of *Rosa hybrida* ("Sandra", "Cardinal" and "Silva") were gathered during from June to October and watered when necessary. Tenax TA (2,6-diphenyl-*p*-phenylene oxide polymer, 250–177 µm), Porapak Q (ethylvinylbenzene divinyl benzene copolymer, 149–125 µm), and Sep-Pak plus C<sub>18</sub> (octadecyl silane)

cartridge were purchased from Waters (Milford, MA, USA). Chromosorb P (diatomite firebrick), and W (diatomite, 177–149  $\mu\text{m}$ ) were obtained from Supelco (Bellefonte, PA, USA). CN cartridge and  $\text{NH}_2$  cartridge (100 mg/1 ml) were from Alltech (Deerfield, IL, USA). Both farnesene and farnesol purchased from Tokyo Kasei (Japan) were mixtures of isomers, all other fragrance standards were of analytical grade (purity, 99.9%) were purchased from Sigma (St. Louis, MO, USA) or Tokyo Kasei. All organic solvents were of analytical grade were purchased from Sigma. Water used in the experiments was distilled-deionized and then purified using an E-pure water purification system (Barnstead/Thermolyne, Dubuque, IA, USA). The specific conductivity of this water was  $1.8 \times 10^{-7} \Omega^{-1} \text{ cm}^{-1}$ .

## 2.2. Collection techniques of fragrance compounds from flowers

Fragrance compounds were collected from the rose flowers by the following SPTE methods. Freshly cut rose flower samples (ca. 50 g) just after anthesis were enclosed in a clean, dry barrel of the intravenous glass syringe (50 ml, 3 cm I.D.  $\times$  14 cm long) which removed its plunger and needle. And then a couple of barrels were fitted together with a polytetrafluoroethylene (PTFE, Teflon) spacer gasket and held by a joint clip, as illustrated in Fig. 1. An

available cartridge or the Pasteur pipet (0.565 cm I.D.  $\times$  15 cm long) was used as a trap-housing in which packed with adsorbent (500 mg) and glass wool plugs. Seven kinds of adsorbents such as Tenax TA, Porapak Q, Chromosorb P, and W, Sep-Pak plus  $\text{C}_{18}$ , CN and  $\text{NH}_2$  cartridges were used for the comparison. This adsorbent trap was activated prior to use by pre-rinsing with 2 ml of diethyl ether. The Luer lock inlet at the end of cartridge housing or the inlet of the Pasteur pipet was attached to the Luer taper tip of the barrel containing the flower cut. An oil-free electric vacuum pump (Vacuubrand, Wertheim, Germany, diaphragm ME2 model, 2.4  $\text{m}^3/\text{h}$ ) and a PTFE valve restrictor were connected with Tygon tubing to the outlet end of the trap. A purified nitrogen gas (purity, 99.99%) flow at ca. 400 ml/min was passed into a couple of barrels and out through the adsorbent trap under reduced pressure. The collection was continued for 3 h at ambient temperature. After a run, the trap was then removed and the trapped fragrance compounds were eluted by two extractions with 2 ml of diethyl ether in portions to the new syringe to which the trap was attached and forcing the solvent through with the syringe plunger. The extract obtained in a small vial (2 ml) was further concentrated to final volume of approximately 200  $\mu\text{l}$  on a water bath at 80°C by using a Kuderna-Danish concentrator jointed with a Snyder column. Aliquots were analyzed by GC.

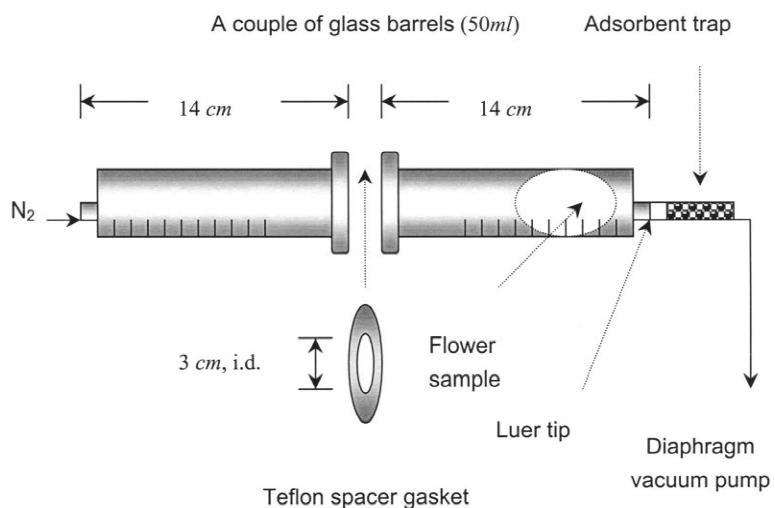



Fig. 1. A trapping apparatus to collect floral fragrances.

### 2.3. Gas chromatography

All samples were analyzed by a HP 5890 series II gas chromatograph (Hewlett-Packard, Avondale, PA, USA) using a 2- $\mu$ l sample, 250°C split injection (split ratio 1:30), a flame ionization detector at 250°C, crosslinked 5% phenyl poly(dimethylsiloxane) wall-coated open tubular (WCOT) column (Ultra 2, Hewlett-Packard, 25 m  $\times$  0.2 mm I.D., 0.33  $\mu$ m film thickness). Gas flow-rates were kept as follows: nitrogen carrier gas, 2 ml/min; hydrogen, 30 ml/min; air, 300 ml/min. The column oven temperature was held 70°C for 3 min and then programmed to 240°C at a rate 5°C/min, and held at final temperature for 20 min. GC peak areas were integrated with a HP 3396A integrator (Hewlett-Packard).

### 2.4. Gas chromatography–mass spectrometry

Trace GC with GC-Q Plus ion trap MS<sup>n</sup> (Thermoquest-Finnigan, Austin, TX, USA) gas chromatograph–mass spectrometer with Xcalibur software system (Thermoquest-Finnigan) was used for separation and identification. Identification was based on comparison of mass spectral information and retention indices with 46 authentic standards. Peak identification was confirmed by the use of Kovats retention indices ( $I$ ) on a polar liquid phase and on a nonpolar phase. Structural assignments were based on searching against the NIST and Wiley library data. A crosslinked 5% phenyl poly(dimethylsiloxane) WCOT (SPB-5, Supelco, 60 m  $\times$  0.25 mm I.D., 0.25  $\mu$ m film thickness) column was used as a non-polar phase and a poly(ethylene glycol) WCOT (Supelcowax-10, Supelco, 30 m  $\times$  0.32 mm I.D., 0.25  $\mu$ m film thickness) column was used as a polar phase. In the case of a non-polar column, injector temperature was 240°C, oven temperature was held 70°C for 8 min and then programmed to 240°C at a rate of 5°C/min, and held at final temperature for 20 min. The carrier gas was He at 1.0 ml/min flow-rate. The sample volume injected was 1 or 2  $\mu$ l, and the split ratio was 1:30. The electron impact (EI) ionization mass spectrometer was operated as follows: ionization voltage, 70 eV; ion source temperature, 200°C; transfer line temperature, 275°C. The oven temperature program of a polar column was

40°C (5 min)–4°C/min–150°C–8°C/min–240°C; injector, 230°C; transfer line, 230°C; all other conditions were the same as those of a non-polar column.

## 3. Results and discussion

### 3.1. Gas chromatography–mass spectrometry

Fig. 2 shows a total ion chromatograms (TIC) of the 46 authentic standards of the identified constituents of *Rosa hybrida*. A standard mixture was prepared containing an accurately known amount of about 0.1 g of each standard in 20 ml of diethyl ether. This mixture was analyzed by GC or GC–MS. Fig. 2A is a TIC separated by using a crosslinked 5% phenyl poly(dimethyl siloxane) column, B is a TIC by a poly(ethylene glycol) column. The peak numbers in Fig. 2 correspond to the numbers indicated in the first column of Table 1.

The retention factor ( $k$ ) and retention indices ( $I$ ) on non-polar and polar columns for standard mixture are summarized in Table 1, in order of increasing  $t_R$  on a non-polar phase. The characteristic mass spectral ions ( $m/z$ ) of each peak are summarized in Table 2. Among the 46 constituents, farnesol, farnesene, and 2,6-dimethoxy toluene were identified when steam distillation technique with reduced pressure instead of SPTE was used to collect fragrances from *Rosa hybrida*. Six peaks of farnesene and four peaks of farnesol were observed, respectively, because a mixture of isomers for these compounds was used in this work. However, their geometric isomerisms are uncertain.

It should be noted that butylated hydroxy toluene, 2,6-dimethoxy toluene and bis(2-ethylhexyl) phthalate were thought to be a contaminants or pollutants. Butylated hydroxy toluene is used as an antioxidant for synthetic rubbers and plastics. Bis(2-ethylhexyl) phthalate has been widely used as a plasticizer. Recently these compounds have been known as the endocrine disruptor [40–45]. It is unknown whether these compounds were polluted through a certain insect from air, polyvinylchloride sheets and polystyrene containers used in the farmland or by any other reasons. Our results evidenced an example of

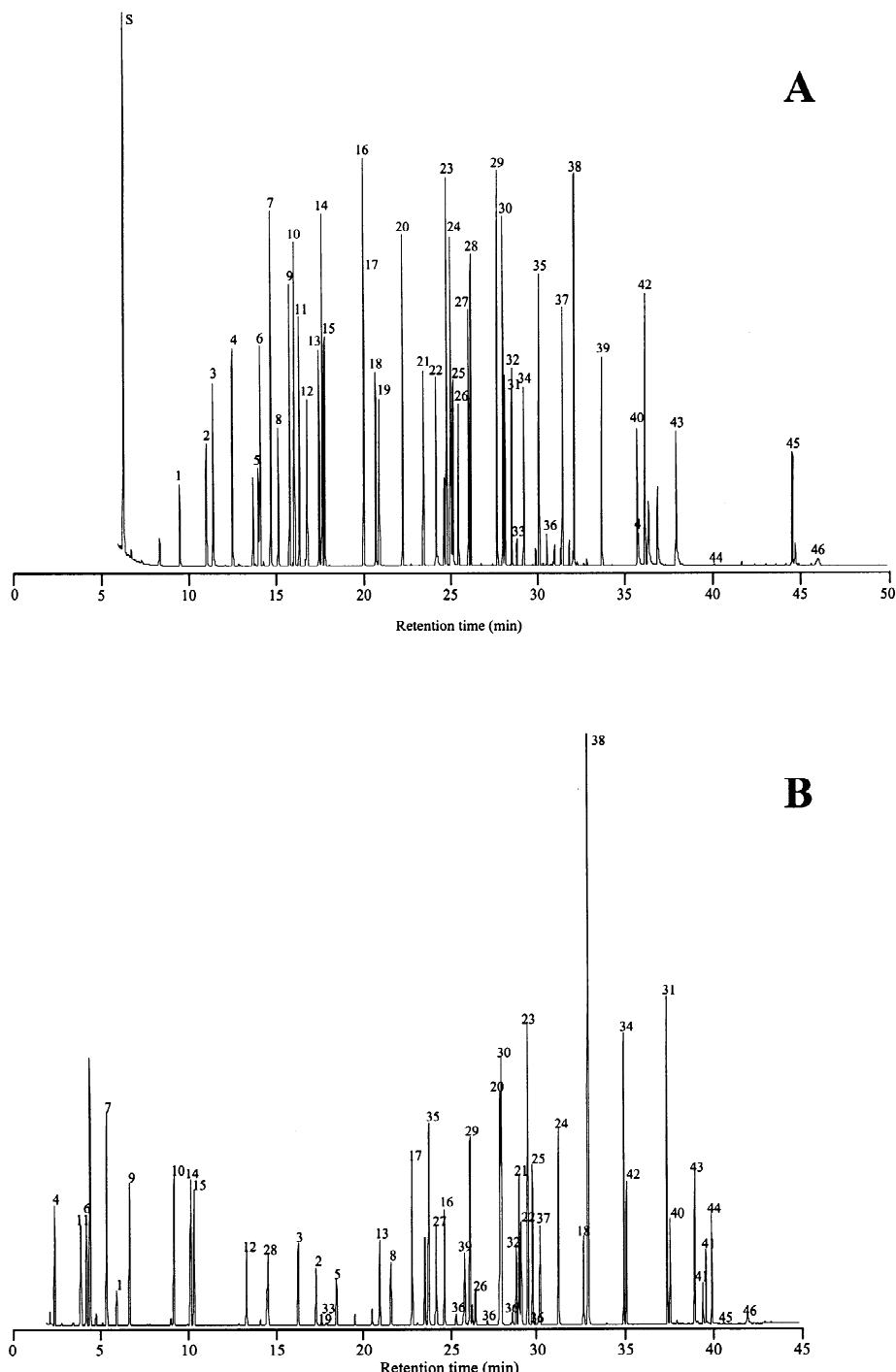



Fig. 2. Total ion chromatograms of authentic standards of the identified constituents of *Rosa hybrida*: obtained by using (A) 5% phenyl poly(dimethylsiloxane) (Supelco SPB-5, 60 m × 0.25 mm × 0.25 µm) column and (B) polyethylene glycol (Supelcowax-10, 30 m × 0.32 mm × 0.25 µm) column. Peak numbers correspond to the numbers indicated in Table 1. For analytical conditions, see Section 2.

Table 1

The retention factors (*k*) and retention indices (*I*) on non-polar and polar columns for standards mixture identified from floral fragrances of *Rosa hybrida*

| Peak no. | Compound                                        | Non-polar column:                                                                           |          |          | Polar column:                                                                   |          |          | $\Delta I^f$ |  |
|----------|-------------------------------------------------|---------------------------------------------------------------------------------------------|----------|----------|---------------------------------------------------------------------------------|----------|----------|--------------|--|
|          |                                                 | 5% phenylpoly(dimethylsiloxane) <sup>d</sup><br>(Supelco SPB-5)<br>60 m × 0.25 mm × 0.25 μm |          |          | polyethylene glycol <sup>e</sup><br>(Supelcowax-10)<br>30 m × 0.32 mm × 0.25 μm |          |          |              |  |
|          |                                                 | <i>t<sub>R</sub></i>                                                                        | <i>k</i> | <i>I</i> | <i>t<sub>R</sub></i>                                                            | <i>k</i> | <i>I</i> |              |  |
| 1        | Butyl acetate                                   | 9.35                                                                                        | 0.99     | 808      | 6.07                                                                            | 3.30     | 1047     | 239          |  |
| 2        | <i>cis</i> -3-Hexen-1-ol                        | 11.05                                                                                       | 1.36     | 857      | 17.43                                                                           | 11.36    | 1376     | 519          |  |
| 3        | Hexanol                                         | 11.44                                                                                       | 1.44     | 868      | 16.41                                                                           | 10.64    | 1348     | 480          |  |
| 4        | Nonane                                          | 12.55                                                                                       | 1.68     | 900      | 2.55                                                                            | 0.81     | 900      | 0            |  |
| 5        | 2-Cyclohexen-1-one                              | 14.04                                                                                       | 1.99     | 939      | 18.60                                                                           | 12.19    | 1410     | 471          |  |
| 6        | $\alpha$ -Pinene                                | 14.14                                                                                       | 2.01     | 942      | 4.35                                                                            | 2.09     | 1005     | 63           |  |
| 7        | Camphepane                                      | 14.75                                                                                       | 2.14     | 958      | 5.51                                                                            | 2.91     | 1033     | 75           |  |
| 8        | Benzaldehyde                                    | 15.17                                                                                       | 2.23     | 969      | 21.73                                                                           | 14.41    | 1507     | 538          |  |
| 9        | $\beta$ -Pinene                                 | 15.82                                                                                       | 2.37     | 986      | 6.83                                                                            | 3.84     | 1065     | 79           |  |
| 10       | $\beta$ -Myrcene                                | 16.12                                                                                       | 2.44     | 993      | 9.33                                                                            | 5.62     | 1139     | 146          |  |
| 11       | Decane                                          | 16.37                                                                                       | 2.49     | 1000     | 4.12                                                                            | 1.92     | 1000     | 0            |  |
| 12       | Hexyl acetate                                   | 16.84                                                                                       | 2.59     | 1017     | 13.47                                                                           | 8.55     | 1268     | 251          |  |
| 13       | 2-Ethyl hexanol                                 | 17.51                                                                                       | 2.73     | 1042     | 21.09                                                                           | 13.96    | 1490     | 448          |  |
| 14       | Limonene                                        | 17.68                                                                                       | 2.77     | 1049     | 10.29                                                                           | 6.30     | 1176     | 127          |  |
| 15       | Cineole                                         | 17.83                                                                                       | 2.80     | 1054     | 10.49                                                                           | 6.44     | 1183     | 129          |  |
| 16       | Methyl benzoate                                 | 20.09                                                                                       | 3.28     | 1124     | 24.80                                                                           | 16.59    | 1575     | 451          |  |
| 17       | Linalool                                        | 20.13                                                                                       | 3.29     | 1125     | 22.95                                                                           | 15.28    | 1534     | 409          |  |
| 18       | 2-Phenylethanol                                 | 20.76                                                                                       | 3.43     | 1140     | 32.76                                                                           | 22.23    | 1859     | 719          |  |
| 19       | Isophorone                                      | 20.98                                                                                       | 3.47     | 1146     | 17.87                                                                           | 11.67    | 1388     | 242          |  |
| 20       | Benzylacetate                                   | 22.31                                                                                       | 3.76     | 1177     | 28.00                                                                           | 18.86    | 1703     | 526          |  |
| 21       | Methyl salicylate                               | 23.51                                                                                       | 4.01     | 1208     | 29.08                                                                           | 19.62    | 1749     | 541          |  |
| 22       | $\beta$ -Citronellol                            | 24.24                                                                                       | 4.17     | 1232     | 29.20                                                                           | 19.71    | 1755     | 523          |  |
| 23       | $\beta$ -Phenylethyl acetate                    | 24.83                                                                                       | 4.34     | 1252     | 29.59                                                                           | 19.99    | 1771     | 519          |  |
| 24       | Geraniol                                        | 25.06                                                                                       | 4.29     | 1260     | 31.34                                                                           | 21.23    | 1826     | 566          |  |
| 25       | 2,6-Dimethoxy toluene <sup>a,b</sup>            | 25.22                                                                                       | 4.38     | 1266     | 29.86                                                                           | 20.18    | 1783     | 517          |  |
| 26       | Citral                                          | 25.54                                                                                       | 4.45     | 1276     | 26.59                                                                           | 17.86    | 1632     | 356          |  |
| 27       | 2-Undecanone                                    | 26.10                                                                                       | 4.57     | 1295     | 24.33                                                                           | 16.26    | 1564     | 269          |  |
| 28       | Tridecane                                       | 26.24                                                                                       | 4.59     | 1300     | 14.67                                                                           | 9.40     | 1300     | 0            |  |
| 29       | Citronellyl acetate                             | 27.76                                                                                       | 4.92     | 1353     | 26.28                                                                           | 17.64    | 1616     | 263          |  |
| 30       | Neryl acetate                                   | 28.09                                                                                       | 4.99     | 1365     | 28.07                                                                           | 18.91    | 1706     | 341          |  |
| 31       | Eugenol                                         | 28.20                                                                                       | 5.01     | 1369     | 37.53                                                                           | 25.62    | 1994     | 625          |  |
| 32       | Geranyl acetate                                 | 28.59                                                                                       | 5.10     | 1382     | 28.91                                                                           | 19.50    | 1742     | 360          |  |
| 33       | Tetradecane                                     | 29.10                                                                                       | 5.20     | 1400     | 18.29                                                                           | 11.97    | 1400     | 0            |  |
| 34       | Methyl eugenol                                  | 29.28                                                                                       | 5.24     | 1410     | 35.07                                                                           | 23.87    | 1918     | 508          |  |
| 35       | Caryophyllene                                   | 30.17                                                                                       | 5.43     | 1460     | 23.92                                                                           | 15.96    | 1555     | 95           |  |
| 36       | Farnesene<br>(mixture of isomer) <sup>b,c</sup> | 31.16                                                                                       | 5.64     | 1510     | 25.44                                                                           | 17.04    | 1589     | 79           |  |
|          |                                                 | 31.81                                                                                       | 5.78     | 1532     | 26.36                                                                           | 17.70    | 1620     | 88           |  |
|          |                                                 | 32.60                                                                                       | 5.95     | 1560     | 27.23                                                                           | 18.31    | 1664     | 104          |  |
|          |                                                 | 33.10                                                                                       | 6.06     | 1577     | 27.88                                                                           | 18.77    | 1698     | 121          |  |
|          |                                                 | 33.31                                                                                       | 6.10     | 1584     | 28.66                                                                           | 19.33    | 1731     | 147          |  |
|          |                                                 | 34.10                                                                                       | 6.27     | 1611     | 29.19                                                                           | 19.70    | 1754     | 143          |  |
| 37       | 2-Tridecanone                                   | 31.50                                                                                       | 5.72     | 1521     | 30.29                                                                           | 20.48    | 1801     | 280          |  |
| 38       | Butylated hydroxy toluene <sup>a</sup>          | 32.19                                                                                       | 5.86     | 1545     | 33.06                                                                           | 22.45    | 1867     | 322          |  |
| 39       | Hexadecane                                      | 33.77                                                                                       | 6.20     | 1600     | 25.96                                                                           | 17.41    | 1600     | 0            |  |
| 40       | Tetradecanol                                    | 35.77                                                                                       | 6.63     | 1668     | 37.70                                                                           | 25.74    | 1999     | 331          |  |

Table 1. Continued

| Peak no. | Compound                                       | Non-polar column:<br>5% phenylpoly(dimethylsiloxane) <sup>d</sup><br>(Supelco SPB-5)<br>60 m×0.25 mm×0.25 μm |      |      | Polar column:<br>polyethylene glycol <sup>e</sup><br>(Supelcowax-10)<br>30 m×0.32 mm×0.25 μm |       |      | ΔI <sup>f</sup> |
|----------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------|------|----------------------------------------------------------------------------------------------|-------|------|-----------------|
|          |                                                | t <sub>R</sub>                                                                                               | k    | I    | t <sub>R</sub>                                                                               | k     | I    |                 |
| 41       | Farnesol<br>(mixture of isomer) <sup>b,c</sup> | 36.11                                                                                                        | 6.70 | 1680 | 39.10                                                                                        | 26.73 | 2042 | 362             |
|          |                                                | 37.73                                                                                                        | 7.04 | 1762 | 39.61                                                                                        | 27.09 | 2057 | 295             |
|          |                                                | 37.77                                                                                                        | 7.05 | 1764 | 39.81                                                                                        | 27.23 | 2063 | 299             |
|          |                                                | 38.27                                                                                                        | 7.16 | 1795 | 40.16                                                                                        | 27.48 | 2074 | 279             |
| 42       | 2-Pentadecanone                                | 36.23                                                                                                        | 6.72 | 1684 | 35.22                                                                                        | 23.98 | 1923 | 239             |
| 43       | Pentadecanol                                   | 37.98                                                                                                        | 7.10 | 1778 | 39.11                                                                                        | 26.74 | 2042 | 264             |
| 44       | Hexadecanol                                    | 40.11                                                                                                        | 7.55 | 1839 | 40.06                                                                                        | 27.41 | 2071 | 232             |
| 45       | 2-Dodecen-1-ylsuccinic anhydride               | 44.61                                                                                                        | 8.51 | 1966 | 40.30                                                                                        | 27.58 | 2078 | 112             |
| 46       | Bis(2-ethylhexyl)phthalate <sup>a</sup>        | 46.08                                                                                                        | 8.83 | 2019 | 42.40                                                                                        | 29.07 | 2143 | 124             |

<sup>a</sup> Contaminants.<sup>b</sup> Identified from a sample collected by the steam distillation under reduced pressure.<sup>c</sup> Their geometric isomerisms are uncertain.<sup>d</sup> Operating conditions: column oven, 70°C (8 min)–5°C/min–240°C (20 min); injector, 240°C; transfer line, 275°C; ion source, 200°C; EI, 70 eV; carrier (He) flow, 1 ml/min; split ratio, 30:1; injection volume, 1 μl instrument, Thermoquest-Finnigan Trace GC with GC-Q plus ion trap MS".<sup>e</sup> Operating conditions: column oven, 40°C (5 min)–4°C/min–150°C–8°C/min–240°C/min (5 min); injector, 230°C; transfer line, 230°C; all other conditions are the same as a 5% phenyl poly(dimethylsiloxane) column.<sup>f</sup> ΔI = I<sub>(polar)</sub> – I<sub>(non-polar)</sub>.

the serious problems of the current environmental pollution.

### 3.2. Comparison of relative trapping efficiency by different adsorbent traps

A series of trapping experiments were carried out to assess the relative trapping performances of the various adsorbents. One μl of the standards mixture (0.1 g of each standard in 20 ml) was added to 50 mg of pure cotton enclosed in a couple of syringe barrels, and then SPTE using the chosen adsorbent trap was implemented according to the experimental procedure. After SPTE implements, aliquots were analyzed by GC. Separately, a standards mixture was analyzed with GC by the direct injection without SPTE procedures. The relative trapping efficiency percent based on the relative GC peak area ratio was calculated as follows:

$$\text{Relative trapping efficiency (\%)} = 100$$

$$\times (\text{Peak area of compound by SPTE}) /$$

$$(\text{Peak area of compound without SPTE})$$

Trapping efficiencies of the various adsorbents

were compared. Table 3 lists the relative trapping efficiency percent of the authentic standards of the identified constituents of *Rosa hybrida* "Sandra" fragrance by using SPTE with different adsorbents. It can be seen that SPTE adsorbents used in this study gave the low efficiencies within 13%. And there is a considerable variation in the efficiencies observed. Tenax TA and Porapak Q were the better efficient adsorbents while Chromosorb P, Chromosorb W were the least effective. CN and NH<sub>2</sub> cartridges showed the selectivities to farnesol, 2-ethyl hexanol, and linalool but efficiencies of many other compounds were poor. When Tenax TA was used as the adsorbent 45 compounds were trapped except hexadecanol was hardly detected. The relative efficiencies of α- or β-pinene, β-myrcene, decane, 2-ethyl hexanol, limonene, cineol, and linalool on Porapak Q were higher than on Tenax TA. Neither Tenax TA nor Porapak Q alone effectively trapped the full range of floral fragrance compounds. The relative efficiencies of the present study were lower than previous report by Patt et al. [20].

The relative trapping efficiencies of the selected standards were repeated for different trapping times using Porapak Q and Tenax TA as the adsorbent

Table 2

Characteristic mass spectral ions of volatile compounds identified from floral fragrances of *Rosa hybrida* using a 5% phenyl poly(dimethylsiloxane) column (Supelco SPB-5, 60 m × 0.25 mm × 0.25 µm)<sup>a</sup>

| Peak no. | Compound                             | $M_r$ | Base peak $m/z$ (100%, species)           | Characteristic mass spectral ions (EI) $m/z$ (relative abundance %, species)                                                                                                                                                                                            |
|----------|--------------------------------------|-------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Butyl acetate                        | 116   | 43(CH <sub>3</sub> CO)                    | 41(32, C <sub>3</sub> H <sub>5</sub> ), 56(9, C <sub>4</sub> H <sub>8</sub> ), 73(0.1, C <sub>4</sub> H <sub>9</sub> O), 116(0.07, M <sup>+</sup> )                                                                                                                     |
| 2        | cis-3-Hexen-1-ol                     | 100   | 67(M–H <sub>2</sub> O & CH <sub>3</sub> ) | 41(69,C <sub>3</sub> H <sub>5</sub> ), 31(20, CH <sub>2</sub> OH), 82(3.5,M–H <sub>2</sub> O), 69(1, M–CH <sub>2</sub> OH), 100(0.07, M <sup>+</sup> )                                                                                                                  |
| 3        | Hexanol                              | 102   | 41(C <sub>3</sub> H <sub>5</sub> )        | 56(24, M–H <sub>2</sub> O & C <sub>2</sub> H <sub>4</sub> ), 69(9.9, M–H <sub>2</sub> O & CH <sub>3</sub> ), 84(0.1, M–H <sub>2</sub> O), 102(0.1, M <sup>+</sup> )                                                                                                     |
| 4        | Nonane                               | 128   | 41(C <sub>3</sub> H <sub>5</sub> )        | 57(34, C <sub>4</sub> H <sub>9</sub> ), 43(32, C <sub>3</sub> H <sub>7</sub> ), 85(1.6, C <sub>6</sub> H <sub>13</sub> ), 71(1.3, C <sub>5</sub> H <sub>11</sub> ), 128(0.04, M <sup>+</sup> )                                                                          |
| 5        | 2-Cyclohexen-1-one                   | 96    | 68(M–CO)                                  | 39(91, C <sub>3</sub> H <sub>5</sub> ), 42(35, C <sub>3</sub> H <sub>6</sub> ), 28(5, CO), 96(3, M <sup>+</sup> )                                                                                                                                                       |
| 6        | α-Pinene                             | 136   | 91(C <sub>7</sub> H <sub>7</sub> )        | 77(37, C <sub>6</sub> H <sub>5</sub> ), 93(25, C <sub>7</sub> H <sub>9</sub> ), 65(7, C <sub>5</sub> H <sub>5</sub> ), 41(5, C <sub>3</sub> H <sub>5</sub> ), 136(0.67, M <sup>+</sup> ), 137(0.27, M+1)                                                                |
| 7        | Camphene                             | 136   | 91(C <sub>7</sub> H <sub>7</sub> )        | 93(66, C <sub>7</sub> H <sub>9</sub> ), 77(52, C <sub>6</sub> H <sub>5</sub> ), 39(29, C <sub>3</sub> H <sub>5</sub> ), 65(19, C <sub>5</sub> H <sub>5</sub> ), 41(14, C <sub>3</sub> H <sub>5</sub> ), 136(0.81, M <sup>+</sup> ), 137(1, M+1)                         |
| 8        | Benzaldehyde                         | 106   | 77(C <sub>6</sub> H <sub>5</sub> )        | 105(99, M–1), 51(95, C <sub>4</sub> H <sub>3</sub> ), 106(10, M <sup>+</sup> )                                                                                                                                                                                          |
| 9        | β-Pinene                             | 136   | 91(C <sub>7</sub> H <sub>7</sub> )        | 77(50, C <sub>6</sub> H <sub>5</sub> ), 93(31,C <sub>7</sub> H <sub>9</sub> ), 41(24, C <sub>5</sub> H <sub>5</sub> ), 65(9, C <sub>5</sub> H <sub>5</sub> ), 136(1.1, M <sup>+</sup> ), 137(0.48, M+1)                                                                 |
| 10       | β-Myrcene                            | 136   | 91(C <sub>7</sub> H <sub>7</sub> )        | 41(53, C <sub>5</sub> H <sub>5</sub> ), 77(42, C <sub>6</sub> H <sub>5</sub> ), 93(30,C <sub>7</sub> H <sub>9</sub> ), 65(9, C <sub>5</sub> H <sub>5</sub> ), 136(0.58, M <sup>+</sup> ), 137(0.47, M+1)                                                                |
| 11       | Decane                               | 142   | 41(C <sub>3</sub> H <sub>5</sub> )        | 43(35, C <sub>3</sub> H <sub>7</sub> ), 57(35, C <sub>4</sub> H <sub>9</sub> ), 71(6, C <sub>5</sub> H <sub>11</sub> ), 85(1.38, C <sub>6</sub> H <sub>13</sub> ), 142(0.03, M <sup>+</sup> )                                                                           |
| 12       | Hexyl acetate                        | 144   | 43(CH <sub>3</sub> CO)                    | 41(70, C <sub>3</sub> H <sub>5</sub> ), 39(50, C <sub>3</sub> H <sub>3</sub> ), 56(28, C <sub>4</sub> H <sub>8</sub> ), 145(2.25, M+1), 101(0.65, M–43) 144(0.12, M <sup>+</sup> )                                                                                      |
| 13       | 2-Ethyl hexanol                      | 130   | 41(C <sub>3</sub> H <sub>5</sub> ),       | 55(56, C <sub>4</sub> H <sub>7</sub> ), 57(30, C <sub>4</sub> H <sub>9</sub> ), 29(27, C <sub>2</sub> H <sub>5</sub> ), 84(1.3, M–C <sub>2</sub> H <sub>4</sub> & H <sub>2</sub> O), 112(0.18, M–H <sub>2</sub> O)                                                      |
| 14       | Limonene                             | 136   | 67(C <sub>5</sub> H <sub>7</sub> )        | 91(64, C <sub>7</sub> H <sub>7</sub> ), 93(29, C <sub>7</sub> H <sub>9</sub> ), 41(18, C <sub>3</sub> H <sub>5</sub> ), 136(1.03, M <sup>+</sup> ), 137(0.78, M+1)                                                                                                      |
| 15       | Cineole                              | 154   | 43(C <sub>3</sub> H <sub>7</sub> )        | 81(57, M–CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> ), 154(1.47, M <sup>+</sup> ), 155(4.19, M+1)                                                                                                                                                 |
| 16       | Methyl benzoate                      | 136   | 77(C <sub>6</sub> H <sub>5</sub> )        | 105(86, C <sub>6</sub> H <sub>5</sub> CO), 136(20, M <sup>+</sup> ), 137(81, M+1)                                                                                                                                                                                       |
| 17       | Linalool                             | 154   | 43(C <sub>3</sub> H <sub>7</sub> )        | 91(71, C <sub>7</sub> H <sub>7</sub> ), 81(58, M–CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>2</sub> ), 93(44, C <sub>7</sub> H <sub>9</sub> ), 55(37, C <sub>4</sub> H <sub>7</sub> ), 80(31, C <sub>6</sub> H <sub>8</sub> ), 136(7, M–H <sub>2</sub> O) |
| 18       | 2-Phenylethanol                      | 122   | 91(M–CH <sub>2</sub> OH)                  | 65(22, C <sub>5</sub> H <sub>5</sub> ), 77(4, C <sub>6</sub> H <sub>5</sub> ), 31(4, CH <sub>2</sub> OH), 104(0.89, M–H <sub>2</sub> O), 122(0.59, M <sup>+</sup> )                                                                                                     |
| 19       | Isophorone                           | 138   | 39(C <sub>3</sub> H <sub>3</sub> )        | 82(58, C <sub>6</sub> H <sub>10</sub> ), 95(8, M–C <sub>3</sub> H <sub>7</sub> ), 138(1.62, M <sup>+</sup> ), 139(1.39, M+1)                                                                                                                                            |
| 20       | Benzylacetate                        | 150   | 79(C <sub>6</sub> H <sub>7</sub> )        | 91(98,C <sub>7</sub> H <sub>7</sub> ), 108(71,M–CH <sub>2</sub> CO), 43(42, CH <sub>3</sub> CO), 150(2.42, M <sup>+</sup> )                                                                                                                                             |
| 21       | Methyl salicylate                    | 152   | 92(C <sub>6</sub> H <sub>4</sub> O)       | 63(55, C <sub>5</sub> H <sub>3</sub> ), 120(43, M–CH <sub>3</sub> OH), 152(12, M <sup>+</sup> ), 153(1.3, M+1)                                                                                                                                                          |
| 22       | β-Citronellol                        | 156   | 67(C <sub>5</sub> H <sub>7</sub> )        | 81(34, C <sub>6</sub> H <sub>9</sub> ), 79(33, C <sub>6</sub> H <sub>7</sub> ), 69(7, C <sub>5</sub> H <sub>9</sub> ), 138(0.5, M–H <sub>2</sub> O), 156(0.06, M <sup>+</sup> )                                                                                         |
| 23       | β-Phenylethyl acetate                | 164   | 91(C <sub>7</sub> H <sub>7</sub> )        | 65(20, C <sub>5</sub> H <sub>5</sub> ), 105(3, C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub> ), 43(0.2, CH <sub>3</sub> CO), 104(0.03,C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH), 164(0.63, M <sup>+</sup> )                                     |
| 24       | Geraniol                             | 154   | 41(C <sub>3</sub> H <sub>5</sub> )        | 67(47, C <sub>5</sub> H <sub>7</sub> ), 91(22, C <sub>7</sub> H <sub>7</sub> ), 69(12, C <sub>5</sub> H <sub>9</sub> ), 154(2, M <sup>+</sup> )                                                                                                                         |
| 25       | 2,6-Dimethoxy toluene <sup>b,c</sup> | 152   | 77(C <sub>6</sub> H <sub>5</sub> )        | 91(88, C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> ), 152(45, M <sup>+</sup> ), 121(32, M–CH <sub>2</sub> O), 137(13, M–CH <sub>3</sub> ), 153(6, M+1), 151(4, M–1)                                                                                                   |
| 26       | Citral                               | 152   | 41(C <sub>3</sub> H <sub>5</sub> )        | 39(97, C <sub>3</sub> H <sub>3</sub> ), 69(11, C <sub>5</sub> H <sub>9</sub> ), 109(10, M–CH <sub>2</sub> CHO), 123(3, M–CHO), 43(3, CH <sub>2</sub> CHO), 152(0.35, M <sup>+</sup> )                                                                                   |

Table 2. Continued

| Peak no. | Compound                                | $M_r$ | Base peak $m/z$ (100%, species) | Characteristic mass spectral ions (EI) $m/z$ (relative abundance %, species)                                      |
|----------|-----------------------------------------|-------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 27       | 2-Undecanone                            | 170   | 43( $C_3H_7$ )                  | 58(24, $CH_3COCH_3$ ), 171(2.94, $M+1$ ), 170(0.27, $M^+$ ), 155(0.21, $M-CH_3$ )                                 |
| 28       | Tridecane                               | 184   | 41( $C_4H_9$ )                  | 57(37, $C_4H_9$ ), 71(12, $C_5H_{11}$ ), 184(0.05, $M^+$ )                                                        |
| 29       | Citronellyl acetate                     | 198   | 67( $C_5H_7$ )                  | 81(47, $C_6H_9$ ), 41(47, $C_3H_5$ ), 43(26, $CH_3CO$ ), 95(21, $C_7H_{11}$ )                                     |
| 30       | Neryl acetate                           | 196   | 41( $C_3H_5$ )                  | 91(70, $C_7H_7$ ), 43(39, $CH_3CO$ ), 93(37, $C_7H_9$ )                                                           |
| 31       | Eugenol                                 | 164   | 77( $C_6H_5$ )                  | 91(90, $C_6H_5CH_3$ ), 164(37, $M^+$ ), 149(16, $M-CH_3$ ), 94(15, $C_6H_5OH$ ), 165(5, $M+1$ ), 163(2, $M-1$ )   |
| 32       | Geranyl acetate                         | 196   | 39( $C_3H_5$ )                  | 41(90, $C_3H_5$ ), 43(82, $CH_3CO$ ), 67(94, $C_5H_7$ ), 196(0.01, $M^+$ )                                        |
| 33       | Tetradecane                             | 198   | 41( $C_3H_5$ )                  | 57(67, $C_4H_9$ ), 71(35, $C_5H_{11}$ ), 198(1.12, $M^+$ ), 199(0.07, $M+1$ )                                     |
| 34       | Methyl eugenol                          | 178   | 91( $C_6H_5CH_2$ )              | 77(71, $C_6H_5$ ), 178(32, $M^+$ ), 147(24, $M-OCH_3$ ), 163(11, $M-CH_3$ ), 179(5, $M+1$ ), 177(1, $M-1$ )       |
| 35       | Caryophyllene                           | 204   | 91( $C_7H_7$ )                  | 77(52, $C_6H_5$ ), 79(49, $C_6H_7$ ), 41(37, $C_3H_5$ ), 105(30, $C_8H_9$ ), 204(0.63, $M^+$ ), 205(0.18, $M+1$ ) |
| 36       | Farnesene <sup>c,d</sup>                | 204   | 91( $C_7H_7$ )                  | 41(84, $C_3H_5$ ), 39(61, $C_3H_3$ ), 77(47, $C_6H_5$ ), 93(44, $C_7H_9$ ), 204(0.22, $M^+$ )                     |
| 37       | 2-Tridecanone                           | 198   | 43( $CH_3CO$ )                  | 58(26, $CH_3COCH_3$ ), 71(8, $C_5H_{11}$ ), 198(0.2, $M^+$ )                                                      |
| 38       | Butylated hydroxy toluene <sup>b</sup>  | 220   | 57( $C_4H_9$ )                  | 205(95, $M-CH_3$ ), 220(56, $M^+$ ), 221(11, $M+1$ )                                                              |
| 39       | Hexadecane                              | 226   | 41( $C_3H_5$ )                  | 55(91, $C_4H_7$ ), 39(75, $C_3H_3$ ), 67(47, $C_5H_7$ ), 226(0.04, $M^+$ )                                        |
| 40       | Tetradecanol                            | 214   | 43( $C_3H_7$ )                  | 41(29, $C_3H_5$ ), 39(25, $C_3H_3$ ), 31(20, $CH_2OH$ )                                                           |
| 41       | Farnesol <sup>c,d</sup>                 | 222   | 41( $C_3H_5$ )                  | 39(89, $C_3H_3$ ), 67(69, $C_5H_7$ ), 79(53, $C_6H_7$ ), 91(46, $C_7H_7$ ), 69(20, $C_3H_9$ ), 222(0.03, $M^-$ )  |
| 42       | 2-Pentadecanone                         | 226   | 41( $C_3H_5$ )                  | 55(91, $C_4H_7$ ), 39(75, $C_3H_3$ ), 67(47, $C_5H_7$ ), 226(0.04, $M^+$ ), 227(0.09, $M+1$ )                     |
| 43       | Pentadecanol                            | 228   | 41( $C_3H_5$ )                  | 55(93, $C_4H_7$ ), 67(77, $C_5H_7$ ), 31(20, $CH_2OH$ ), 182(0.1, $M-H_2O$ & $C_2H_4$ ), 210(0.03, $M-H_2O$ )     |
| 44       | Hexadecanol                             | 242   | 41( $C_3H_5$ )                  | 55(91, $C_4H_7$ ), 67(50, $C_5H_7$ ), 31(22, $CH_2OH$ )                                                           |
| 45       | 2-Dodecen-1-yl-succinic anhydride       | 266   | 67( $C_3H_7$ )                  | 39(75, $C_3H_3$ ), 41(77, $C_3H_5$ ), 79(68, $C_6H_7$ ), 55(50, $CH_2CHCO$ )                                      |
| 46       | Bis(2-ethylhexyl)phthalate <sup>b</sup> | 390   | 149( $C_6H_5(CO)_2OH$ )         | 41(94, $C_3H_5$ ), 55(52, $C_4H_7$ ), 77(24, $C_6H_5$ ), 57(22, $CH_3CH_2O$ ), 390(0.01, $M^+$ )                  |

<sup>a</sup> Operating conditions: column oven, 70°C (8 min)–5°C/min–240°C (20 min); injector, 240°C; transfer line, 275°C; ion source, 200°C; EI, 70 eV; carrier (He) flow, 1 ml/min; split ratio, 30:1; injection volume, 1  $\mu$ l instrument, Thermoquest-Finnigan Trace GC with GC-Q plus ion trap MS".

<sup>b</sup> Contaminants.

<sup>c</sup> Identified from a sample collected by the steam distillation under reduced pressure.

<sup>d</sup> Their geometric isomerisms are uncertain.

with the results shown in Figs. 3 and 4. The trappings of  $\alpha$ -pinene, butyl acetate, nonane are complete after 1 h, benzaldehyde and tridecane after 2 h,  $\beta$ -phenylethyl acetate, hexadecane, tetradecanol, 2-phenylethanol, citral, citronellol, and caryophyllene after 3 h. It was impossible to achieve

quantitative trapping for all standards in a chosen trapping time.

### 3.3. Floral fragrance composition of *Rosa hybrida*

TIC of the floral fragrances of *Rosa hybrida*

Table 3

Relative trapping efficiencies of standard compounds by different adsorbent traps (mean efficiency %)

| Peak no. | Compound                         | Adsorbent <sup>a</sup> |       |      |      |      |      |
|----------|----------------------------------|------------------------|-------|------|------|------|------|
|          |                                  | A-1                    | A-2   | A-3  | A-4  | A-5  | A-6  |
| 1        | Butyl acetate                    | 0.06                   | 0.16  | 0.01 | 0.01 | 0.01 | 0.14 |
| 2        | cis-3-Hexen-1-ol                 | 0.30                   | 1.57  | 0.02 | 0.01 | 0.02 | 0.58 |
| 3        | Hexanol                          | 0.41                   | 2.25  | 0.07 | 0.04 | 0.09 | 0.79 |
| 4        | Nonane                           | 0.17                   | 1.29  | 0.03 | 0.03 | 0.04 | 0.23 |
| 5        | 2-Cyclohexan-1-one               | 1.20                   | 2.01  | 0.01 | 0.01 | 0.01 | 0.59 |
| 6        | α-Pinene                         | 0.21                   | 1.28  | 0.01 | 0.01 | 0.01 | 0.14 |
| 7        | Camphepane                       | 1.20                   | 1.42  | 0.01 | 0.01 | 0.01 | 0.55 |
| 8        | Benzaldehyde                     | 1.89                   | 3.77  | 0.01 | 0.02 | 0.03 | 0.26 |
| 9        | β-Pinene                         | 0.28                   | 3.19  | 0.01 | 0.01 | 0.01 | 0.17 |
| 10       | β-Myrcene                        | 0.81                   | 10.09 | 0.01 | 0.02 | 0.36 | 0.25 |
| 11       | Decane                           | 0.47                   | 12.67 | 0.01 | 0.02 | 0.04 | 0.31 |
| 12       | Hexyl acetate                    | 1.71                   | 6.08  | 0.02 | 0.02 | 0.11 | 0.65 |
| 13       | 2-Ethyl hexanol                  | 0.95                   | 10.61 | 0.08 | 0.03 | 0.43 | 1.10 |
| 14       | Limonene                         | 0.96                   | 12.53 | 0.04 | 0.02 | 0.05 | 0.22 |
| 15       | Cineole                          | 1.48                   | 8.92  | 0.01 | 0.03 | 0.12 | 0.39 |
| 16       | Methyl benzoate                  | 4.84                   | 10.73 | 0.02 | 0.03 | 0.28 | 0.38 |
| 17       | Linalool                         | 1.44                   | 4.88  | 0.04 | 0.03 | 0.66 | 0.88 |
| 18       | 2-Phenylethanol                  | 2.78                   | 2.18  | 0.05 | 0.04 | 0.40 | 0.18 |
| 19       | Isophorone                       | 2.22                   | 4.16  | 0.05 | 0.03 | 0.64 | 1.26 |
| 20       | Benzylacetate                    | 7.87                   | 6.05  | 0.03 | 0.04 | 0.65 | 0.65 |
| 21       | Methyl salicylate                | 6.75                   | 6.19  | 0.02 | 0.05 | 0.66 | 0.37 |
| 22       | β-Citronellol                    | 1.64                   | 1.38  | 0.13 | 0.03 | 1.46 | 0.14 |
| 23       | β-Phenylethyl acetate            | 4.55                   | 4.46  | 0.03 | 0.04 | 2.15 | 0.50 |
| 24       | Geraniol                         | 4.77                   | 1.66  | 0.12 | 0.03 | 1.51 | 0.12 |
| 25       | 2,6-Dimethoxy toluene            | 4.55                   | 1.96  | 0.04 | 0.05 | 2.15 | 0.50 |
| 26       | Citral                           | 4.63                   | 1.97  | 0.08 | 0.04 | 1.55 | 0.48 |
| 27       | 2-Undecanone                     | 3.97                   | 2.29  | 0.08 | 0.04 | 2.63 | 0.40 |
| 28       | Tridecane                        | 2.84                   | 4.08  | 0.01 | 0.07 | 4.04 | 0.49 |
| 29       | Citronellyl acetate              | 3.15                   | 1.86  | 0.05 | 0.04 | 3.01 | 0.29 |
| 30       | Neryl acetate                    | 3.01                   | 1.58  | 0.04 | 0.04 | 2.72 | 0.25 |
| 31       | Eugenol                          | 1.59                   | 0.84  | 0.10 | 0.04 | 1.24 | 0.14 |
| 32       | Geranyl acetate                  | 2.39                   | 1.53  | 0.04 | 0.04 | 2.88 | 0.23 |
| 33       | Tetradecane                      | 2.91                   | 1.92  | 0.02 | 0.05 | 4.81 | 0.22 |
| 34       | Methyl eugenol                   | 1.23                   | 0.76  | 0.11 | 0.03 | 1.70 | 0.12 |
| 35       | Caryophyllene                    | 1.47                   | 2.33  | 0.01 | 0.05 | 3.40 | 0.28 |
| 36       | Farnesene                        | 1.80                   | 0.66  | 0.01 | 0.01 | 2.47 | 0.20 |
| 37       | 2-Tridecanone                    | 0.87                   | 0.63  | 0.11 | 0.03 | 1.10 | 0.07 |
| 38       | Butylated hydroxy toluene        | 0.99                   | 0.63  | 0.01 | 0.02 | 1.45 | 0.08 |
| 39       | Hexadecane                       | 0.75                   | 0.47  | 0.02 | 0.02 | 0.89 | 0.05 |
| 40       | Tetradecanol                     | 0.06                   | 1.06  | 0.03 | 0.01 | 0.04 | 0.01 |
| 41       | Farnesol                         | 0.84                   | 0.01  | 0.01 | 0.01 | 0.01 | 2.40 |
| 42       | 2-Pentadecanone                  | 0.07                   | 0.08  | 0.08 | 0.02 | 0.16 | 0.02 |
| 43       | Pentadecanol                     | 0.15                   | 0.01  | 0.01 | 0.01 | 0.01 | 0.10 |
| 44       | Hexadecanol                      | 0.01                   | 0.01  | 0.01 | 0.01 | 0.01 | 0.02 |
| 45       | 2-Dodecen-1-ylsuccinic anhydride | 0.16                   | 0.10  | 0.01 | 0.01 | 0.07 | 0.07 |
| 46       | Bis(2-ethylhexyl)phthalate       | 0.17                   | 0.13  | 0.02 | 0.08 | 0.33 | 3.85 |
|          |                                  |                        |       |      |      |      | 0.13 |

<sup>a</sup> Adsorbent symbols: A-1, Tenax TA; A-2, Porapak Q; A-3, Chromosorb P; A-4, Chromosorb W; A-5, C<sub>18</sub> cartridge; A-6, CN cartridge; A-7, NH<sub>2</sub> cartridge. n=3.

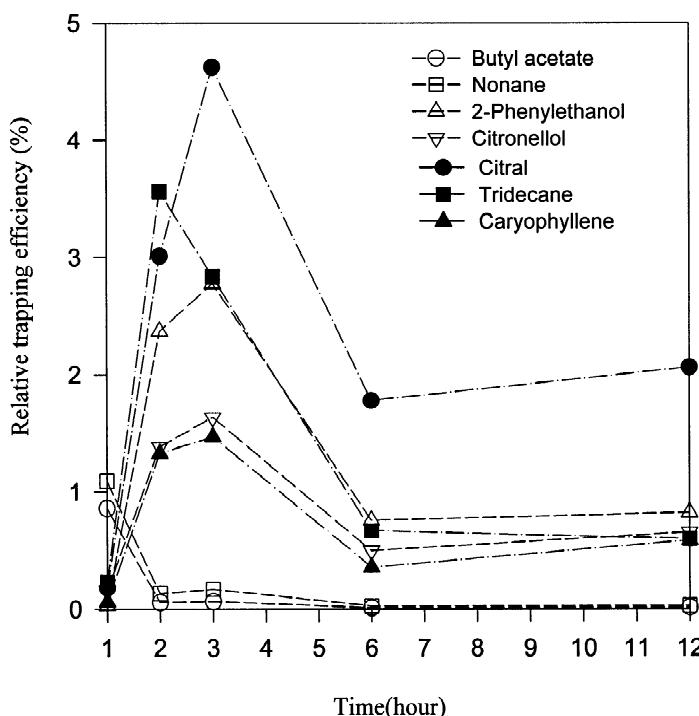



Fig. 3. Relative trapping efficiencies of standard compounds as a function of trapping time by Tenax TA trap.

“Sandra” collected by Porapak Q and Tenax TA trapping techniques were shown in Fig. 5. The peak numbers in Fig. 5 correspond to the numbers indicated in the first column of Table 1. Components without a peak number were not found as separate peaks in the analysis of rose flower sample.

In Table 4 the relative percentages of the peak area of the all components found in *Rosa hybrida* “Sandra” are listed. A total of 41 compounds were identified in the floral fragrances of *Rosa hybrida*. These include 11 alcohols, two aldehydes, five alkanes, six monoterpenes, one sesquiterpene, 10 esters, one ether, and five ketones. Porous trap materials vary considerably in their ability to trap fragrance compounds. Therefore, the predominant components retrieved by different adsorbent traps are variable. In the case of the Tenax-trapped sample citral (18.6%), nonane (12.4%), and butyl acetate (11.0%) were major components, whereas nonane (14.9%), decane (12.7%) and  $\beta$ -phenylethyl acetate (10.4%) in the Porapak Q-trapped sample. Hexadecanol (33.8%) and citral (17.2%) were major fragrance constituents trapped on the Chromsorb P. In the

case of Chromosorb W-trapped samples, 2-phenylethanol (14.6%), and hexadecanol (13.0%) were major fragrances but sesquiterpene (caryophyllene) was not found. Very large amount of  $\beta$ -pinene was present on the C<sub>18</sub> (51.1%) or NH<sub>2</sub> (49.7%). However, small amounts of methyl eugenol and 2-undecanone were detected only by C<sub>18</sub> trap and Chromosorb P trap, respectively.

Variation in floral fragrances among the three closely related species of *Rosa hybrida* was investigated. Comparison of the identified components of *Rosa hybrida* “Sandra”, *Rosa hybrida* “Cardinal” and *Rosa hybrida* “Silva” by Tenax TA trapping method is summarized in Table 5. There are some distinct differences. Three of the species, “Cardinal” species contained sesquiterpene caryophyllene, hexadecanol, hexanol, and nonane as the major components. Citral, and  $\beta$ -myrcene were present highly in “Silva” species. In contrast to “Sandra” species, significantly higher amounts of  $\beta$ -myrcene, limonene, caryophyllene, and small amounts of geranyl acetate, neryl acetate and undecanone found in “Cardinal” and “Silva”. Interestingly, within the

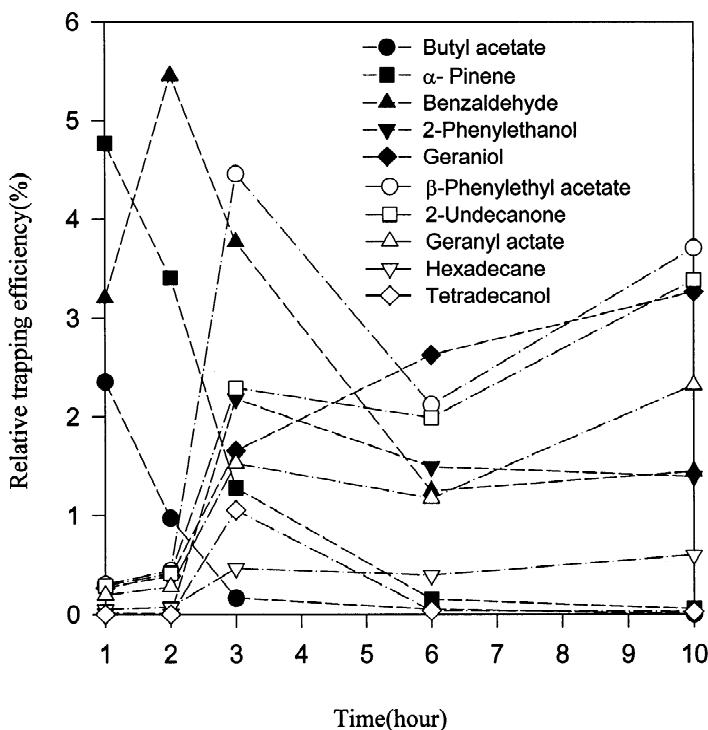



Fig. 4. Relative trapping efficiencies of standard compounds as a function of trapping time by Porapak Q trap.

*Rosa hybrida* group, pentadecanol was found only in "Cardinal" whereas methyl eugenol and  $\beta$ -citroneol were observed only in "Silva". However, "Cardinal" and "Silva" lacked eugenol,  $\alpha$ -pinene, methyl benzoate,  $\beta$ -phenylethyl acetate which were present in "Sandra". Floral fragrances may differ not only between flower species, but also sample to sample within a single species.

An important finding of the present investigation is that floral fragrance of *Rosa hybrida* contains 2-ethyl hexanol, hexadecanol, *cis*-3-hexen-1-ol, pentadecanol, tetradecanol, benzaldehyde, hexadecane, tetradecane, benzyl acetate, methyl benzoate, methyl salicylate, cineole, 2-cyclohexen-1-one, and isophorone. These components have not earlier been reported as flower fragrances of Rosaceae [1–11]. However, some components such as hexadecanal, tetradecanal, 3-methyl-1-butanol, 3-hexenyl acetate, hexyl acetate, pentyl acetate, tetradecyl acetate, methoxy benzene, geranial, linalyl acetate, linalool

oxide and germacrene D were not detected, whereas these components were identified by other researchers [1–11].

Hydrocarbons are known to be produced by flowers from fatty acids by decarboxylation [46–48]. Aliphatic alcohol such as *cis*-3 hexenol (so-called "leaf alcohol") is a catabolism product of various unsaturated fatty acids [49]. Benzyl alcohol, benzaldehyde, and benzyl acetate are thought to be phenylpropanoid metabolites formed from the oxidation of cinnamoyl CoA [50]. 2-Phenylethanol is synthesized in rose petals from L-phenylalanine [51,52]. Monoterpenes and aromatic esters such as benzyl acetate and methyl benzoate possess pleasant floral odours. While benzaldehyde possesses a fruit-like odour, benzyl alcohol has a high threshold of olfactory detection and may contribute significantly to floral odours [50]. The  $\beta$ -phenylethyl acetate is of some interest because it has long been used as a synthetic honey flavor [53]. Caryophyllene has been impli-

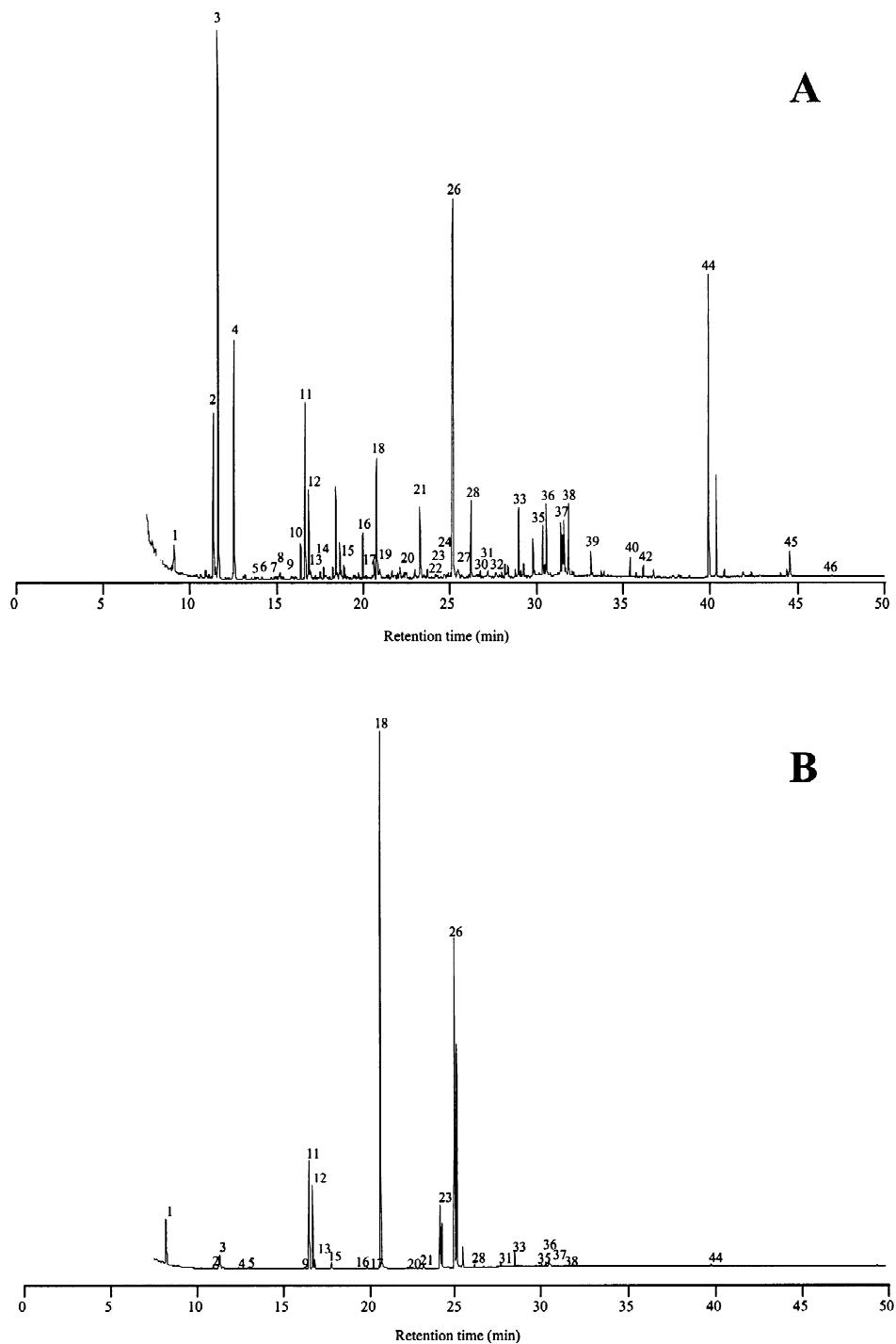



Fig. 5. Total ion chromatograms of floral fragrances collected by (A) Porapak Q trap and (B) Tenax TA trap from *Rosa hybrida* "Sandra". Peak numbers correspond to the numbers indicated in Table 1. For analytical conditions, see Section 2.

Table 4

Composition of floral fragrances in *Rosa hybrida* "Sandra" collected by different adsorbent traps (mean peak area %)

| Group         | Compound                         | Adsorbent <sup>a</sup> |      |      |      |      |      |      |
|---------------|----------------------------------|------------------------|------|------|------|------|------|------|
|               |                                  | A-1                    | A-2  | A-3  | A-4  | A-5  | A-6  | A-7  |
| Alcohol       | β-Citronellol                    | nd                     | 0.2  | 0.2  | nd   | nd   | nd   | nd   |
|               | 2-Ethyl hexanol                  | 3.1                    | 1.9  | nd   | nd   | 2.4  | 3.8  | 3.1  |
|               | Geraniol                         | 0.0                    | 2.9  | 0.7  | nd   | nd   | 0.4  | nd   |
|               | Hexadecanol                      | 4.0                    | 2.9  | 33.8 | 13.0 | 1.8  | 5.7  | 1.8  |
|               | Hexanol                          | 3.3                    | 6.1  | 0.4  | 2.8  | nd   | 0.9  | 0.2  |
|               | cis-3-Hexen-1-ol                 | 0.2                    | 2.4  | nd   | nd   | 0.3  | nd   | 3.1  |
|               | Linalool                         | 3.2                    | 0.9  | 0.5  | nd   | nd   | 1.4  | nd   |
|               | Pentadecanol                     | nd                     | nd   | nd   | nd   | nd   | 0.6  | 1.4  |
|               | 2-Phenylethanol                  | 3.0                    | 0.3  | 1.8  | 14.6 | 0.3  | 6.5  | 1.7  |
|               | Tetradecanol                     | 0.8                    | nd   | nd   | 9.8  | nd   | 0.5  | nd   |
| Aldehyde      | Benzaldehyde                     | 5.5                    | 6.8  | 2.5  | 7.6  | 0.3  | 3.6  | 0.6  |
|               | Citral                           | 18.6                   | 8.3  | 17.2 | 5.0  | 8.2  | 36.0 | 8.4  |
| Alkane        | Decane                           | 9.1                    | 12.7 | 0.4  | 2.2  | 1.2  | 0.9  | 0.6  |
|               | Hexadecane                       | 0.8                    | 0.3  | 1.9  | 3.4  | 2.0  | 0.9  | 0.8  |
|               | Nonane                           | 12.4                   | 14.9 | 8.8  | nd   | 2.0  | 14.2 | 1.4  |
|               | Tetradecane                      | 1.0                    | 0.5  | nd   | 1.1  | 2.4  | 0.5  | 0.7  |
|               | Tridecane                        | 1.1                    | 0.2  | nd   | 1.0  | nd   | 1.3  | nd   |
| Monoterpene   | Camphene                         | 1.4                    | 2.2  | nd   | nd   | 0.5  | nd   | 2.0  |
|               | Limonene                         | nd                     | 1.5  | 4.0  | 4.6  | 0.3  | 0.8  | nd   |
|               | β-Myrcene                        | nd                     | 6.1  | nd   | nd   | nd   | 0.4  | nd   |
|               | α-Pinene                         | 1.4                    | 2.3  | 0.8  | nd   | 1.0  | 3.4  | 4.2  |
|               | β-Pinene                         | 1.3                    | 1.5  | 0.5  | nd   | 51.1 | 1.8  | 49.7 |
| Sesquiterpene | Caryophyllene                    | 0.8                    | 0.6  | 7.3  | nd   | 0.3  | 1.3  | 0.8  |
| Ester         | Benzylacetate                    | 0.6                    | 0.3  | nd   | nd   | 0.6  | 0.5  | nd   |
|               | Butyl acetate                    | 11.0                   | 0.5  | nd   | 6.1  | 8.5  | 3.8  | 6.4  |
|               | Citronellyl acetate              | nd                     | nd   | 1.3  | nd   | 0.4  | 0.4  | 0.4  |
|               | 2-Dodecen-1-ylsuccinic anhydride | 1.0                    | 1.0  | 7.6  | 8.6  | 0.5  | 1.8  | 0.4  |
|               | Geranyl acetate                  | nd                     | 0.2  | 2.1  | nd   | 0.4  | 0.3  | 0.2  |
|               | Hexyl acetate                    | 4.2                    | 1.8  | 0.5  | 1.1  | 0.2  | 0.6  | 0.4  |
|               | Methyl benzoate                  | 3.5                    | 1.7  | 0.6  | 3.0  | 1.0  | 1.3  | 1.3  |
|               | Methyl salicylate                | 1.2                    | 0.5  | 0.6  | 0.0  | 1.0  | 1.3  | 0.4  |
|               | Neryl acetate                    | nd                     | nd   | 2.5  | nd   | 0.3  | nd   | 0.5  |
| Ether         | β-Phenylethyl acetate            | 0.9                    | 10.4 | nd   | nd   | nd   | nd   | nd   |
|               | Cineole                          | 1.4                    | 1.7  | nd   | 2.2  | 0.4  | 1.3  | nd   |
|               | Eugenol                          | 0.4                    | 0.2  | nd   | nd   | 0.2  | nd   | nd   |
| Ketone        | Methyl eugenol                   | nd                     | nd   | nd   | nd   | 0.2  | nd   | nd   |
|               | 2-Cyclohexan-1-one               | 1.9                    | 5.2  | nd   | nd   | 6.5  | nd   | 7.3  |
|               | Isophorone                       | 0.7                    | 0.2  | nd   | 3.2  | 0.9  | 1.2  | nd   |
|               | 2-Pentadecanone                  | 0.4                    | 0.3  | 1.3  | 2.4  | 1.5  | 0.8  | 0.5  |
|               | 2-Tridecanone                    | 1.7                    | 0.3  | 1.8  | 8.3  | 3.0  | 1.8  | 1.8  |
|               | 2-Undecanone                     | nd                     | nd   | 1.1  | nd   | nd   | nd   | nd   |

<sup>a</sup> Adsorbent symbols: A-1, Tenax TA; A-2, Porapak Q; A-3, Chromosorb P; A-4, Chromosorb W; A-5, C<sub>18</sub> cartridge; A-6, CN cartridge; A-7, NH<sub>2</sub> cartridge. n = 3. nd = not detected.

Table 5

Composition of floral fragrances in different species of *Rosa hybrida* collected by Tenax TA trap

| Group         | Compound                          | <i>Rosa hybrida</i> |            |         |
|---------------|-----------------------------------|---------------------|------------|---------|
|               |                                   | “Sandra”            | “Cardinal” | “Silva” |
| Alcohol       | β-Citronellol                     | nd                  | nd         | +       |
|               | 2-Ethyl hexanol                   | ++                  | +          | +       |
|               | Geraniol                          | nd                  | nd         | nd      |
|               | Hexadecanol                       | ++                  | +++        | ++      |
|               | Hexanol                           | ++                  | +++        | +++     |
|               | cis-3-Hexen-1-ol                  | +                   | nd         | +       |
|               | Linalool                          | +++                 | +          | +       |
|               | Pentadecanol                      | nd                  | +          | nd      |
|               | 2-Phenylethanol                   | ++++                | nd         | +++     |
|               | Tetradecanol                      | +                   | ++         | nd      |
| Aldehyde      | Benzaldehyde                      | +++                 | ++         | nd      |
|               | Citral                            | +++                 | +          | ++++    |
| Alkane        | Decane                            | +++                 | +          | ++      |
|               | Hexadecane                        | +                   | ++         | ++      |
|               | Nonane                            | +++                 | +++        | +++     |
|               | Tetradecane                       | ++                  | ++         | ++      |
|               | Tridecane                         | ++                  | ++         | nd      |
| Monoterpene   | Camphene                          | ++                  | +          | +       |
|               | Limonene                          | nd                  | ++         | +++     |
|               | β-Myrcene                         | nd                  | +          | +++     |
|               | α-Pinene                          | ++                  | nd         | nd      |
|               | β-Pinene                          | ++                  | +          | +       |
| Sesquiterpene | Caryophyllene                     | +                   | ++++       | +++     |
| Ester         | Benzylacetate                     | +                   | ++         | +       |
|               | n-Butyl acetate                   | +++                 | +          | +       |
|               | Citronellyl acetate               | nd                  | +          | +       |
|               | 2-Dodecen-1-yl-succinic anhydride | ++                  | ++         | +       |
|               | Geranyl acetate                   | nd                  | +          | +       |
|               | Hexyl acetate                     | ++                  | nd         | +       |
|               | Methyl benzoate                   | ++                  | nd         | nd      |
|               | Methyl salicylate                 | ++                  | ++         | ++      |
|               | Neryl acetate                     | nd                  | ++         | +       |
|               | β-Phenylethyl acetate             | +                   | nd         | nd      |
| Ether         | Cineole                           | ++                  | ++         | +       |
|               | Eugenol                           | +                   | nd         | nd      |
|               | Methyl eugenol                    | nd                  | nd         | +       |
| Ketone        | 2-Cyclohexan-1-one                | ++                  | nd         | +       |
|               | Isophorone                        | +                   | ++         | nd      |
|               | 2-Pentadecanone                   | +                   | ++         | ++      |
|               | 2-Tridecanone                     | ++                  | +          | ++      |
|               | 2-Undecanone                      | nd                  | +          | ++      |

nd=not detected. +, &lt;0.5%; ++, 0.5–1%; +++, 1–5%; ++++, 5–20%; +++++, &gt;20% (peak area %).

cated as an attractant for the green lace wing insect [54]. Many compounds like geraniol, alcohols, ketones, esters, monoterpenes and sesquiterpenes

were established in field tests as the most important “key” compounds for the attraction and excitation of mate seeking bees [55,56].

## Acknowledgements

This work was supported by the Ministry of Science and Technology of Korea (KISTEP 99-N6-03-01-B-07, SWU-99-0167).

## References

- [1] J.T. Knudsen, L. Tollsten, G. Bergstrom, *Phytochemistry* 33 (1993) 253.
- [2] H.E.M. Dobson, J. Bergstrom, G. Bergstrom, I. Groth, *Phytochemistry* 26 (1987) 3171.
- [3] X. Bu, A. Huang, Y. Sun, Z. Wu, M. Liu, *Acta Bot. Sin.* 29 (1987) 297.
- [4] Y. Chen, Z. Li, H. Li, *Chromatographia* 23 (1987) 502.
- [5] S. Sirikulvadhana, W.G. Jennings, G. Vogel, *Flav. Food. Addit.* 6 (1975) 126.
- [6] B.D. Mookherjee, R.W. Trenkle, R.A. Wilson, *Pure Appl. Chem.* 62 (1990) 1357.
- [7] B.D. Mookherjee, R.W. Trenkle, R.A. Wilson, *J. Essent. Oil Res.* 2 (1989) 85.
- [8] Z. Li, F. Zhao, N. Chen, D. Xue, Y. Chen, *Sepu* 6 (1988) 18.
- [9] Z. Li, F. Zhao, N. Chen, D. Xue, Y. Chen, *Chem. Abstr.* 109 (1988) 61290k.
- [10] C.S. Wu, Y. Wang, D.X. Zhao, *Acta Bot. Sin.* 27 (1985) 510.
- [11] A.N. Pogorelskaya, A.N. Prokof'ev, S.A. Reznikova, *Sov. Plant Physiol.* 27 (1980) 58.
- [12] S.J. Herman, *Chemtech* August (1992) 458.
- [13] L. Somogyi, *Chem. Indust.* 4 (March) (1996) 170.
- [14] E. Pichersky, R.A. Raguso, E. Lewinsohn, R. Croteau, *Plant Physiol.* 106 (1994) 1533.
- [15] R. Kaiser, in: P. Muller, D. Lamparsky (Eds.), *Perfume: Art, Science and Technology*, Elsevier, New York, 1991, p. 213.
- [16] J.H. Loughrin, T.R. Hamilton-Kemp, R.A. Anderson, D.F. Hildebrand, *J. Agric. Food Chem.* 38 (1990) 455.
- [17] G. Bergstrom, G. Birgersson, I. Groth, L.A. Nilsson, *Phytochemistry* 31 (1992) 2315.
- [18] A. Osol (Ed.), *Remington's Pharmaceutical Sciences*, 14th Edition, Mack, Pennsylvania, 1970, p. 502.
- [19] G.W. Robertson, D.W. Griffiths, J.A.T. Woodford, A.N.E. Birch, J.A. Picket, L.J. Wadham, *Phytochemistry* 33 (1993) 1047.
- [20] J.M. Patt, D.F. Rhoades, J.A. Corkill, *Phytochemistry* 27 (1988) 91.
- [21] J.K. Nielsen, H.B. Jakobsen, P. Friis, K. Hansen, J. Moller, C.E. Olsen, *Phytochemistry* 38 (1995) 847.
- [22] O. Pellmyr, G. Bergstrom, I. Groth, *Phytochemistry* 26 (1987) 1603.
- [23] J. Knudsen, L. Tollsten, *Plant Syst. Evol.* 177 (1991) 81.
- [24] C.J. Sutton, S.J. Keegans, W.D.J. Kirk, E.D. Morgan, *Phytochemistry* 31 (1992) 3427.
- [25] G. Bergstrom, H.M. Dobson, I. Groth, *Plant Syst. Evol.* 195 (1995) 221.
- [26] J.M. Patt, T.G. Hartman, R.W. Creekmore, J.J. Elliott, C. Schal, J. Lech, R.T. Rosen, *Phytochemistry* 31 (1992) 487.
- [27] R.G. Butterly, J.A. Kamm, L.C. Ling, *J. Agric. Food Chem.* 30 (1982) 739.
- [28] R. Van Wijik, *J. Chromatogr. Sci.* 8 (1970) 418.
- [29] H. Dean Rood, *Anal. Chim. Acta* 236 (1990) 115.
- [30] A. Zlatkis, H.A. Lichtenstein, A. Tishbee, *Chromatographia* 6 (1973) 67.
- [31] R.E. Majors, *LC-GC* 4 (1986) 972.
- [32] R.D. McDowall, *J. Chromatogr.* 492 (1989) 3.
- [33] G. Musch, D.L. Massart, *J. Chromatogr.* 432 (1988) 209.
- [34] K.G. Furton, J. Rein, *Anal. Chim. Acta* 236 (1990) 99.
- [35] J. Schaefer, in: P. Schreier (Ed.), *Flavor*, Walter de Gruyter, Berlin, 1981, p. 301.
- [36] T.G. Hartman, J. Lech, K. Karmas, J. Salinas, R.T. Rosen, C.-T. Ho, in: C.-T. Ho, C.H. Manley (Eds.), *Flavor Measurement*, Marcel Dekker, New York, 1993, p. 37.
- [37] G.M. Loper, J.L. Webster, *J. Chromatogr. Sci.* 9 (1971) 466–469.
- [38] G.M. Loper, A.M. Lapioli, *Plant Physiol.* 49 (1971) 729–732.
- [39] L.M. McDonough, D.F. Brown, W.C. Aller, *J. Chem. Ecol.* 15 (1989) 779.
- [40] US EPA, Special Report on Environment Endocrine Disruption: An Effects Assessment and Analysis, EPA/630/R-96/012, Washington, DC, 1997.
- [41] US EPA Document No. EPA-SAB-ED-99-013, July 1999.
- [42] Illinois EPA, Endocrine Disruptors Strategy, Feb. 1997.
- [43] WWF Canada <http://www.wwfcanada.org/hormone-disruptors/list.html>.
- [44] T. Colborn, D. Dumanoski, J.P. Myers, in: *Our Stolen Future*, Dutton, New York, 1996.
- [45] M.G. Kim, S.H. Nam, in: 83rd Annual Meeting of the Korean Chemical Society Program and Abstract, Seoul, Korea, April 23–24, 1999.
- [46] P.E. Kolattukudy, R. Croteau, L. Brown, *Plant Physiol.* 54 (1974) 670.
- [47] L.B. Thien, W.H. Heimermann, R.T. Holman, *Taxon* 24 (1975) 557.
- [48] R.G. Binder, C.E. Turner, R.A. Flath, *J. Agric. Food Chem.* 38 (1990) 764.
- [49] G. Buchbauer, L. Jirovecz, M. Wasicky, A. Nikiforov, *J. Agric. Food Chem.* 41 (1993) 116.
- [50] J.H. Loughrin, T.R. Hamilton-Kemp, R.A. Andersen, D.F. Hildebrand, *Phytochemistry* 29 (1990) 2473.
- [51] M.N. Zaprometov, *Biokhimiya* (Moscow) 43 (1978) 2038.
- [52] M.N. Zaprometov, *Chem. Abstr.* 90 (1978) 69166j.
- [53] E. Guenther, in: *The Essential Oils*, Vol. 2, Van Nostrand, New York, 1949, p. 597.
- [54] H.M. Flint, S.S. Salter, S. Waters, *Environ. Entomol.* 8 (1979) 1123.
- [55] A.-K. Borg-Karlsson, *Phytochemistry* 29 (1990) 1359.
- [56] J. Tengo, *Zoon* 7 (1979) 15.